Novel Tacrine-Scutellarin Hybrids as Multipotent Anti-Alzheimer's Agents: Design, Synthesis and Biological Evaluation.
نویسندگان
چکیده
A novel series of 6-chlorotacrine-scutellarin hybrids was designed, synthesized and the biological activity as potential anti-Alzheimer's agents was assessed. Their inhibitory activity towards human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE), antioxidant activity, ability to cross the blood-brain barrier (BBB) and hepatotoxic profile were evaluated in vitro. Among these compounds, hybrid K1383, bearing two methylene tether between two basic scaffolds, was found to be very potent hAChE inhibitor (IC50 = 1.63 nM). Unfortunately, none of the hybrids displayed any antioxidant activity (EC50 ≥ 500 μM). Preliminary data also suggests a comparable hepatotoxic profile with 6-Cl-THA (established on a HepG2 cell line). Kinetic studies performed on hAChE with the most active compound in the study, K1383, pointed out to a mixed, non-competitive enzyme inhibition. These findings were further corroborated by docking studies.
منابع مشابه
Design, synthesis and neuroprotective evaluation of novel tacrine-benzothiazole hybrids as multi-targeted compounds against Alzheimer's disease.
Alzheimer's disease (AD) is a multifactorial disorder with several target proteins contributing to its etiology. In search for multifunctional anti-AD drug candidates, taking into account that the acetylcholinesterase (AChE) and beta-amyloid (Aβ) aggregation are particularly important targets for inhibition, the tacrine and benzothiazole (BTA) moieties were conjugated with suitable linkers in a...
متن کاملDesign, Synthesis and Evaluation of Novel Tacrine-Ferulic Acid Hybrids as Multifunctional Drug Candidates against Alzheimer's Disease.
Five novel tacrine-ferulic acid hybrid compounds (8a-e) were synthesized and their structures were identified on the basis of a detailed spectroscopic analysis. The activities of inhibiting acetyl cholinesterase (AChE) and butyryl cholinesterase (BuChE), reducing self-induced β-amyloid (Aβ) aggregation and chelating Cu2+ were evaluated in vitro. Among them, 8c and 8d displayed the higher select...
متن کاملDesign, Synthesis, Molecular Modeling Studies and Biological Evaluation of N'-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents
HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazi...
متن کاملSynthesis of some Novel Chromenopyrimidine Derivatives and Evaluation of Their Biological Activities
AbstractPyrimidine nucleosides are constituents of fundamental structure of the cells. There has been considerable attentions in the chemistry of pyrimidine derivatives due to having a wide range of biological activities such as antiviral, anti-malarial agents, cytostatic, antithelemintic, antibacterial, adenosine receptor ligands, anti-cancer agents, compounds targeting delayed-type hypersensi...
متن کاملDesign, Synthesis, Molecular Modeling Study and Biological Evaluation of New N'-arylidene-pyrido[2,3-d]pyrimidine-5-carbohydrazide Derivatives as Anti-HIV-1 Agents
In an attempt to identify potential new agents that are active against HIV-1, a series of novel pyridopyrimidine-5-carbohydrazide derivatives featuring a substituted benzylidene fragment were designed and synthesized based on the general pharmacophore of HIV-1 integrase inhibitors. The cytotoxicity profiles of these compounds showed no significant toxicity to human cells and they exhibited anti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2017